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Abstract-Fracture mechanisms of multiple transverse cracking in composite laminates are exam­
ined by using a finite element method employing special singular elements. Since these special
elements contain the exact stress singularity. the stress intensity factors and energy release rates at
the crack tip can be determined conveniently with a high degree of accuracy and a fast rate of
convergence. In this paper. the critical conditions for the behavior of multiple transverse cracking
are studied analytically on the basis of fracture mechanics theory. The numerical predictions are
compared with experimental results for 10/901, laminates ofvarious thicknesses. Very close agreement
is obtained.

I. INTRODUCflON

Damage due to multiple transverse cracks has been observed in experiments on fibrous
composite laminates by Parvizi and Bailey (1978). Highsmith and Reifsnider (1982) and
Crossman et al. (1980). In general. these cracks occur primarily in plies whose fibres are
oriented transverse to the applied load. Laminate property degnldation due to these cracks
is detrimental to structure reliability.

Theoretical studies of the initial stage of transverse cracking have been conducted by
Bailey el al. (1979), Wang, A. and Crossman (1980) and Dvorak and Laws (1987). As the
applied load increases. subsequent cracks in the laminate are formed. At this stage. the
interaction of cracks must be considered. A multiple cracking theory based on shear lag
analysis was developed by Parvizi and Bailey (1978). In their analysis. a one·dimensional
model based on a strength of materials formulation W.lS used. Interaction of cracks was
not included in their model.

Finite clement analysis incorporating the virtual crack closure technique was conducted
by Wang, A. (Wang, A. and Crossman, 1980; Wang. A., 1984). In his paper, the crack
interaction was included, and it has been demonstrated that the energy release rate concept
as a criterion for crack growth can be used in the failure analysis of composite laminates.
However, the accuracy of the technique has been a subject of concern. Since the stress field
near the crack tip is singular, the traditional finite element approach requires too many
elements. In this paper, special singular elements containing the exact stress singularity arc
used. The energy release rate at the crack tip can be determined conveniently with a high
degree of accuracy and a fast rate of convergence.

In the next section, the fundamental nature of the interface tip stress singularity of a
transverse crack in [0/90). laminate is examined. A finite element method employing special
singular clements, which contain the exact stress singularity, is presented in Section 3. By
using this method, the stress intensity factors and energy release rates for each mode can
be determined. In Section 4, the critical energy release rate is obtained by interpreting the
experimental results. The critical energy release rate is compared with the results of Section
3 to determine the critical applied stress for flaw growth with given crack spacing in Section
5. Finally, numerical examples for [0/90], laminates with various thicknesses are studied
and discussed in Section 6.

2. INTERFACE TIP STRESS SINGULARITY OF TRANSVERSE CRACK IN (O!90). LAMINATE

When a crack is embedded in a medium, the order of the stress singularity at the crack
tip is -0.5. ff the crack is terminated at an interface of two media, the stress singularity
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Table I. Material propenies of the glass. epoxy composite

£, (GPa) £: (GPa) G,z (GPa) GZJ (GPa)

4: 14 5 5 0.:7 0.:7 4.3 14.3

The subscripts I. 2 and 3 denote the fiber. transverse and thickness directions of the glass/epoxy composite.
respectively.

order is no longer - 0.5. By solving the pertinent eigenvalue problem. the stress singularities.
CIt. at the interface tip of the crack can be determined. Recently. this problem has been
solved analytically by Ting and Chou (1981l. Zwiers et al. (1982) and Wang. S. and Choi
(1982). and numerically by Yeh and Tadjbakhsh (1986). For the glass/epoxy composite
listed in Table I, there exist three orders of interface tip stress singularities of the crack
normal to 0-90 ply interface. The resulting orders of the singularities are:

£>1 = -0.423

Cll = -0.500

£>111 = -0.500. (I)

For every eigenvalue. (5. there exists a corresponding eigenvector. which represents the
possible mode of deformation around the crack tip. The modes of deformation for the
crack in a [O/90jlaminate are shown in Fig. I. The loading case considered in this study is
dominated by the opening mode of deformation. and the stress singularity. (51. is used in
the analysis.

3. PROBLEM FOR:\fULATION

Consider a [0/901, laminate. which has a transverse ply thickness 2d and a longitudinal
ply thickness h as shown schematically in Fig. 2. When the laminate is subjected to a

(I)

(II) (III)

::::::>'"

Fig. l. The moues of ucformalion for the transverse cra<:k in [0/<)0) lamin:lle. (1) opening moue.
(II) shear muue. and (III/learing moue.

n_<:::=
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Fig. :. Geometry of multiple transverse cracks in [0{901. laminate.
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Fig. J. (ill Si~-node singulilr element and (b) eight-node isopilrametric element.

sulliciently large tensile stress in the x-direction (0"). the tmnsverse ply may suITer multiple
cracks such .IS illustmted in the figure. This problem is treated as a genemlized plane
stmin problem (Lekhnitskii. 1963). The components of displacement are assumed to be
independent of the :-direction. and the laminate is subjected to a constant strain. &0. in the
:-direction such that the total force in the :-direction is equal to zero.

Owing to the singular nature of the transverse cracks in composite laminates, the
special numerical method employing conforming singular finite elements is an attractive
approach to the current problem. In this approach. the exact stress singularity at the cmck
tip can be included in the formulation of the special clements. The concept of the conforming
singular element was originally introduced by Stern (1979). and has been applied to prob­
lems of an interlaminar delamination in tiber-reinforced composite materials by Wang. S.
and Choi (19M4) and Yeh (19MM). Detailed discussion of the nature of the singular elements
was given in Yeh (1988). Only relationships relevant to the current problem are presented
here.

Consider a six-node triangle element with three degrees of freedom per node and the
stress singularity at the node I as shown in Fig. 341. By a proper transformation. any point
in the element ddined in global Cartesian coordinates (x. y. =) can be referred to both polar
coordinates (r. 0,:) and local triangular coordinates (P.~.:) with the origin located at node
I. Within the element. the displacements. {V}. are related to the nodal displacements. {q}.
by the shape function. [N,] and the constant strain, f.o• as

where

{V} = [N,]{q} + {Vo}

{V}T = {U.ll.W}

{qlT = {UI.V'.WI ••.•• U6.V6.W6}

[Nf ] = [N,( p. ~; e5)]

(2)

(3)
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Explicit expressions of the shape function involving the proper stress singularity order. b.
and local coordinates. (p. ~). are given in the Appendix. Excluding the rigid body motion.
then eqn (2) can be rewritten in a more explicit form as follows:

(4)

where [L(~)]. [M(~)] are the nonsingular and singular parts of [N,(p. ~; b)]. respectively.
The p and ~ are related to the global coordinates by the simple transformation given in the
Appendix.

The surrounding nonsingular elements used in this study are quasi-three..<fimensional
eight-node isoparametric elements (Fig. 3b) with 24 degrees of freedom. The shape function
of the singular element is chosen such that the element conforms with a nonsingular
quadratic element at the common element boundary (i.e. along edge 3-5). and with singular
elements of the same formulation along boundaries 1-3 and 1-5.

In a manner consistent with the interface crack between dissimilar isotropic media
(Comninou, 1977), the delamination stress intensity factors are defined as follows:

K I· r:;: -,I ( j"')I =: 1m v ,atr (J, r. n: -,._n

t' I' J'" .. ,j ( j"')""II =: lin _n:r r n r. n: _,_u .

t' I' j:..,.,j. ( j"')"'III =: lnl _n:r t ': r. n: _ .
r_U

(5)

The energy release rates m.lY be evaluated by using the virtU'll erack extension concept
(Irwin. 1957):

Ii"Gl = lim., (J,(r.O) [u(c-r, -n:j2)-u(c-r,3n:j2)]dr
{' .0 _c u

Ii"(In::;: lim 2 r,,(r,O)[t'(t'-r. -n:f2)-r.'(c-r,37tj2)]dr
r-if C ()

Ii"Gill =: lim... r,,(r,O)[w(c-r, -n:j2)-w(c-r. 3n:j2)] dr
«:-.O.I.e 0

(6)

where c is the length of virtual cruck I::xtension. It can be seen that the stress intensity factors
and energy release rutes at the crack tip can be evaluated from the asymptotic solutions of
stress and displacement .lIong the plane of the cruck.

The asymptotic stress and displacement can be conveniently determined by this singular
finite element method. Along the crack plane, e= On. the stress and displacement fields
near the crack tip can be approximated by using eqn (4) and its derivatives as:

{(J} =: ,l[P(On)} {q} (7)

(8)

where [P(On}) is a product of the stiffness m'ltrix and the matrix of derivatives of the shape
function [M(~)J. For {(J} '\Od IUi along the crack plane 0" = n:/2. the asymptotic stresses
and displacements can be written as follows:

(9)

(10)

where
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B, = Bt--B.- fori = I. n. III

1+l9

(11)

in which the A,'s, B .... 's and B;-'s are obtained from the corresponding components of
[P(7t/:!»), [M( -7t/2») and [M(37t/2)] in eqns (7) and (8). Thus. the stress intensity factors
K; can be easily determined from eqn (5) :

( 12)

The energy release rates can be determined through eqn (6) as:

I IeG; = lim -2 (A;r")[B,(c-r)b+l]dr
<-0 C 0

=A.,;B; P(2+c5, I +c5) limc 1+ 2b fori = I. n, III
_ <-0

(13)

where Pis the Beta function as defined in Gradshteyn and Ryzhik (1980). For the inverse
square root singularity, eqn (13) becomes:

7t
G; = 4A,B, fori = I, n, Hl.

4. CRITICAL ENERGY RELEASE RATE

(14)

The quantity measuring the materiul resistance uguinst transverse cracking is the criticul
energy release rute, G,.. The energy release rate, G, for·a given applied stress und crack
spucing can be determined by the present singular finite element method. If G < G" the
l1uw will remain stationary. Conversely, the l1aw grows when G ~ G...

Rased on linear e1ustic fructure mechanics, G.. can be determined as u function of 11.lw
size from the simple tension test of u transverse ply. Note that in this cusc the lluw on the
edge is the most critical location. However, when the transverse ply is constrained by outer
longitudinul plies, the most critical position for a flaw is at the center of the ply. G,. may be
obtained as follows:

( 15)

where the multiplier t.\ 2 accounts for the stress intensity magnificution of an edge crack;
(1, and £, are the tensile strength und Young's modulus of the transverse ply and are found
to be equal to 56 MPa and 14 GPa, respectively. in Bailey et 01. (1979); and a is the flaw
size.

In general, the flaw size is very small compared to the dimension of a trunsverse ply.
Therefore. the calculated G is proportional to o. From eqn (15), G< is also proportional to
0: It follows that the numerical predictions obtained in the analysis will not be influenced
by the value of o.

5. DETERMINATION OF THE CRITICAL APPLIED STRESS

The method used to determine (1... the critical value of the applied far field stress at
which crack propagation occurs, is as follows. The energy release mte. G, is a function of
the applied stress for a given critical flaw location, ply properties. and the geometry of the
laminate. Also, G is a function off.o, U constant strain in the =-direction due to the generalized
plane strain condition. Therefore, we have two unknowns. (1< and 1:0. to be determined for
flaw growth. Under the action of an applied unit stress, we can obtain A... BS' and PI' where
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Fig. 4. E;,;perimentally observed average crack spacing as a function of applied stress for specimens
with different transverse ply thicknesses.

A and B arc defined in eqns (9) and (10). respectively. and P is the total force in the ;­
direction due to the generalized pl.me strain constrainl. Similarly. II,.. Be and Pc can be
obtained from the model response to a unit value of :-direction strain. f. o.

In addition to mechanical loading. thermal ell"ccts must also be considered. In this
study. the laminates arc tested at room temperature. which is 12S"C lower than the curing
temperature. The present model is also used to obtain A,. B, and P, due to thermal effects.
Using the condition that the total force in the :-direction should be equal to zero. i.e.

U,P, + l:oP•. + P, = 0,

and the condition that G = G•. at the onset of crack growth. i.e.

( 16)

( 17)

we can solve for the two unknowns, u.. and 1:0 , Thus. given a prescribed crack spacing. the
critical applied stress to cause crack growth can be determined.

6. NUMERICAL RESULTS AND DISCUSSION

The experimental results shown in Fig. 4 were obtained by Parvizi and Bailey (1978)
for [0/90], laminates with 2" = 0.42-4 mm and h = 0.5 mm. These experimental data may
be categorized into three stages. initiation. multiplication and saturation. The saturation of
transverse cracks is also called the characteristic damage state by Reifsnider (1977). Numeri­
cal predictions from the present model are compared with the experimental results in these
three stages as the applied stress increases.

6.1. Initiation of IranSI'erse cracks
It can be seen from Fig. 4 that there exists a particular stress threshold below which

cracks do not occur. When the applied stress equals the stress threshold. cracks extend
across the transverse ply and terminate at the outside longitudinal plies. The threshold
stress (or strain) can be obtained from the present model. Consider a transverse flaw at the
center of the laminate; only a representative section needs to be modeled due to symmetry.
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Fig. S. Ovcmll and locaillnite element mesh arrangements for modeling crack initiation.

As shown in Fig. 5. eight singular elements of identical size and shape are used. These
spcci~ll singular elements with a -0.5 stress singularity are embedded in the mcsh of eight­
nodc quasi-three-dimensional isoparametric elements.

The numerical predictions of threshold strain Me shown in Fig. 6. both with and
without thermal effects. It can be secn that the results without thermal effects are very close
to a constant which may be obtained from 1.l2Ji fT,IE, = O.634''In. When thermal effects
arc considercd. the influence of transverse ply thickness becomes more pronounced. As the
thickness of the transverse ply increases. the result approaches the same constant. It should
be noted that for the thickness of the transverse ply considered in this paper. the pro~'Css is
controlled by transverse cracking. However. for a very thin tmnsverse ply. the process is
dominated by longitudinal cracking as discussed in Dvorak and Laws (1987).

6.2. MultipliCtltion of transverse cracks
It can be seen from experiments that subsequent cmcks are introduced by increasing

the applied stress. Assuming that all subsequent craeks arc evenly spaced. a representative
section may be considered. due to symmetry. A typicallinite clement mesh is shown in Fig.
7. This mesh is similar to the mesh in Fig. 5. with the exception of the additional erack
bctwcen the two points E and F. Eight singular elements with the h, stress singularity are
placed around the cmck tip (point E).

Consider a laminate with an even crack spacing. S (Fig. 7). As thc applied stress
reaches fT,. the crack spacing will reduce to S/2. Therefore. by connecting the points (fT,.• S)
for all crack spacing. the upper bound solution can be obtained. Similarly. the lower bound
solution can be obtained by connecting the points (IT,. S/2) for all cnlck spacing. The
numerical predictions are compared with experimental data for 2cl = 0.42. 1.2. 2 and 4 mm
as shown in Figs 8-11. respectively.

t.5 ,.----r--.,....--.,.--.,..----,o b---,,__
~af¥lzl. Genen and la'la" (1171)

- - WllIIou oft,",'a

l t.O -- WI." olf....o
c:

l -U---2..----_
.0.5 0 a 0

O ......--..I..--..L----I.--~---'
o t 2 3 4 5

Tran.,,_ ply thlckn••• (mm)

Fig. 6. Comprison of theoretical predictions with cltperimcntal data for initiation of transverse
cracks in 10/90). laminate.
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Fig. 7. Overall finite element mesh arrangement for modeling crack multiplication and crack
saturation.
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Fig. 9. Comparison ofthcorctical predictions with cxperimcntal data for multiplication of transverse
cracks in (0/901. laminatc with 2e1 = 1.2 mm.

Note that for large values of applied stress. the experimental data are bounded by these
two curves. In the initial stage of multiple cracking in the laminate with 2d = 0.42, 1.2 and
2 mm. lower applied stresses are predicted than experimentally observed. This may be due
to the fact that the cracks are not evenly distributed at the onset of crack multiplication.
Also note that for the laminate with 2d = 4 mm. delamination between transverse and
longitudinal plies was observed by Parvizi et al. (1978). More discrepancy is expected when
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Fig. 10. Comparison of theoretical predictions with e:tperimental data for multiplication of trans­
verse cracks in [0/90), laminate with 2d = 2 mm.
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Fig. II. Cnmparisnl1nfthcllrctical pr~'(lictillnswith cltpcrimcnt:tl data for multiplcation oftransverse
cf:lcks in [0/901. lamil1ate with 2t/ =4 mm.

2t1 = 4 mm, since the inter.lction ofdelamin:.Uion and transvcrse cracking is not considered
in the present analysis.

6.3. Saturatiotl of trtmSl'er.se c:rm:ks
From the observation of the laminate behavior with 2d = 0.42 and 1.2 mm in Fig. 4,

there seems to be a state of crack saturation, where the strength of the laminate is not
exceeded during crack multiplication. In this stage, the thermal effects can be neglected,
since the influence of the thermal effects is very small as compared with the effect of the
applied stress. a. It can be shown that G is proportional to a2

, and will reduce as the crack
spacing reduces. Therefore, the saturation crack spacing can be dctermined by letting G =0
at the flaw tip, such that no flaw growth can occur for any valuc of a. The comparison of
numerical predictions and experimental results is shown in Fig. 12. Conservative predictions
arc obtained by the analysis.

3,.---,----r---r-----,
o e......._ ..._'­

......... _.-,(1U.t

- Theoretlc"''''-'-.

Ol-._....L.__..I-__L-._....J

o 0.5 1.0 1.15 2.0

Tr."."..... ply 'h'c'm... (mm)

Fig. 12. Comparison of theoretical predictions with experimental data for saturation of transverse
cracks in [0.90), laminate.
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7. CONCLUSIONS

The fundamental nature of the stress singularity at the interface tip of the transverse
crack in a [0/90], laminate was examined. An advanced finite element method employing
special singular elements containing an exact stress singularity has been used to study
the fracture mechanisms of multiple transverse cracking in composite laminates. Close
agreement between the numerical predictions and experimental results was obtained.

In this study. it was observed that the energy release rate at the flaw tip is proportional
to the flaw size. a. since the thickness of a transverse ply is much larger than a. In some
cases. it may not be true when a is of the same order as the thickness of transverse ply.
Nevertheless. the present method can still be used if the exact values of Gc and a can be
obtained from experiments. Furthennore. the interaction of delamination and transverse
cracking was not considered in the analysis. This may be a good subject for further research.
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APPENDIX: SIIAPE FUNCTIONS [N,(p. ~; 15)) FOR TilE SINGULAR ELEMENT

Corresponding to the order of stress singularity. 15. the shape function in local triangular polar coordimltes.
(p. ~) for thc six-node conforming singular clement is shown in Stern (1979) to have the following expressions:

wherc

2-2-· I •• ,
N, = 1+ 2-J_1 p- 2-.-1 P

2 .;) 2 I ")'. ,N. = ---(1- P+--( -L P• 2-J - I 2-J - I ~

(AI)

(A2)

(A3)
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and I is the J x J identity matrix.
The local coordinates. p and ,. are related to the global coordinates by:

(:c,-x,) tan 9-(y, -y,)
, = 7<'V-','-_-y-',7-)_--;-(x-,-_-'x::"',7-)t:-a::"'n"'9

p = rlfW

14SS

(A4)

(AS)

(A6)

(A7)

(AS)

(A9)

where

f(') = {(.T,-X,)l+(y,- y,)2+ 2,[(x,-x,)(x,-x,) +(y,-y,)(y,-Yl») +,Z[(X,_X,)2+ (y,- y,)l]} 112,

(AIO)


