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Abstract—Fracture mechanisms of multiple transverse cracking in composite laminates are exam-
ined by using a finite element method employing special singular elements. Since these special
elements contain the exact stress singularity, the stress intensity factors and energy release rates at
the crack tip can be determined conveniently with a high degree of accuracy and a fast rate of
convergence. In this paper. the critical conditions for the behavior of multiple transverse cracking
are studied analytically on the basis of fracture mechanics theory. The numerical predictions are
compared with experimental results for [0/90], laminates of various thicknesses. Very close agreement
is obtained.

1. INTRODUCTION

Damage due to multiple transverse cracks has been observed in experiments on fibrous
composite laminates by Parvizi and Bailey (1978), Highsmith and Reifsnider (1982) and
Crossman et al. (1980). In general, these cracks occur primarily in plics whose fibres are
oriented transverse to the applicd load. Laminate property degradation duc to these cracks
is detrimental to structure reliability.

Theoretical studics of the initial stage of transverse cracking have been conducted by
Bailey et al. (1979), Wang, A. and Crossman (1980) and Dvorak and Laws (1987). As the
applicd load increases, subsequent cracks in the laminate arc formed. At this stage, the
interaction of cracks must be considered. A multiple cracking theory based on shear lag
analysis was developed by Parvizi and Bailey (1978). In their analysis, a onc-dimensional
model based on a strength of materiils formulation was used. Interaction of cracks was
not included in their model.

Finite element analysis incorporating the virtual crack closure technique was conducted
by Wang, A. (Wang, A. and Crossman, 1980; Wang, A., 1984). In his paper, the crack
interaction was included, and it has been demonstrated that the energy release rate concept
as a criterion for crack growth can be used in the failure analysis of composite laminates.
However, the accuracy of the technique has been a subject of concern. Since the stress field
near the crack tip is singular, the traditional finite element approach requires too many
elements. In this paper, special singular elements containing the exact stress singularity are
used. The encrgy release rate at the crack tip can be determined conveniently with a high
degree of accuracy and a fast rate of convergence.

In the next section, the fundamental nature of the interface tip stress singularity of a
transverse crack in [0/90], laminate is examined. A finite element method employing special
singular clements, which contain the exact stress singularity, is presented in Scction 3. By
using this method, the stress intensity factors and energy relcase rates for each mode can
be determined. In Section 4, the critical energy release rate is obtained by interpreting the
experimental results. The critical encrgy release rate is compared with the results of Section
3 to determing the critical applicd stress for flaw growth with given crack spacing in Section
S. Finally, numerical examples for [0/90], laminates with various thicknesses are studied
and discussed in Section 6.

2. INTERFACE TIP STRESS SINGULARITY OF TRANSVERSE CRACK IN [0/90], LAMINATE

When a crack is embedded in a medium, the order of the stress singularity at the crack
tip is —0.5. If the crack is terminated at an interface of two media, the stress singularity
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Table 1. Material properties of the glass epoxy compuosite

£, (GPa) E.(GPay G,;(GPa) G, (GPa) Vs Vay 2, (107 per 'C) 2, (10° per C)

42 14 5 5 0.27 0.27 43 4.3

The subscripts I, 2 and 3 denote the fiber, transverse and thickness directions of the glass/epoxy composite,
respectively.

order is no longer —0.5. By solving the pertinent eigenvalue problem., the stress singularities,
J.. at the interface tip of the crack can be determined. Recently. this problem has been
solved analytically by Ting and Chou (1981). Zwiers er al. (1982) and Wang. S. and Choi
(1982), and numerically by Yeh and Tadjbakhsh (1986). For the glass/epoxy composite
listed in Table 1, there exist three orders of interface tip stress singularities of the crack
normal to 0-90 ply interface. The resulting orders of the singularities are :

6 = -0423
5“ = ‘*0.500
(51” = ‘0.500. (l)

For every eigenvalue, J. there exists a corresponding cigenvector, which represents the
possible mode of deformation around the crack tip. The modes of deformation for the
crack in a [0/90] laminate are shown in Fig. 1. The loading case considered in this study is
dominated by the opening mode of deformation, and the stress singularity, dy, is used in
the analysis.

3. PROBLEM FORMULATION

Consider a [0/90], laminate, which has a transverse ply thickness 2d and a longitudinal
ply thickness b as shown schematically in Fig. 2. When the laminate is subjected to a

()] (i)

Fig. |. The modes of deformation for the transverse crack in {0/90] laminate. (1) opening mode,
(1) shear mode, and ({11 tearing mode.

y
Ty mm —
b [+
2d1 w N N4 —k
b o N

/ ~ T se crack
z

Fig. 2. Geometry of multiple transverse cracks in [0/90], laminate.
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Fig. 3. (a) Six-node singular element and (b) eight-node isoparametric clement.

sufficiently large tensile stress in the x-direction (07), the transverse ply may suffer multiple
cracks such as illustrated in the figure. This problem is treated as a generalized plane
strain problem (Lekhnitskii, 1963). The components of displacement are assumed to be
independent of the z-direction, and the laminate is subjected to a constant strain, g, in the
z-direction such thit the total force in the s-direction is equal to zcro.

Owing to the singular nature of the transverse cracks in composite laminates, the
special numerical method employing conforming singular finite elements is an attractive
approach to the current problem. In this approach, the exact stress singularity at the crack
tip can be included in the formulation of the special elements. The concept of the conforming
singular element was originally introduced by Stern (1979), and has been applied to prob-
lems of an interlaminar delamination in fiber-reinforced composite materials by Wang, S.
and Choi (1984) and Yeh (1988). Detailed discussion of the nature of the singular elements
was given in Yeh (1988). Only relationships relevant to the current problem are presented
here.

Consider a six-node triangle element with three degrees of freedom per node and the
stress singularity at the node | as shown in Fig. 3a. By a proper transformation, any point
in the element defined in global Cartesian coordinates (x, y, 2) can be referred to both polar
coordinates (r, 8, 2) and local triangular coordinates (p, ¢, z) with the origin located at node
1. Within the element, the displacements, {U/}, are related to the nodal displacements, {¢},
by the shape function, [N,] and the constant strain, g, as

U} = [N] {q}+{Uo} (@)
where
(UL = {u,0,w}
{q}T = {u..vl. Wi, Uga Ve ”'6}

N] = [N(p.$:0)]
{Uo}T = {0.0, 05} 3
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Explicit expressions of the shape function involving the proper stress singularity order, 4.
and local coordinates. (p. {). are given in the Appendix. Excluding the rigid body motion.
then eqn (2) can be rewritten in a more explicit form as follows:

U} = (o MO+ plLD]] g} @

where [L(&)], [M({)] are the nonsingular and singular parts of [N,(p, &; )], respectively.
The g and & are related to the global coordinates by the simple transformation given in the
Appendix.

The surrounding nonsingular elements used in this study are quasi-three-dimensional
eight-node isoparametric elements (Fig. 3b) with 24 degrees of freedom. The shape function
of the singular element is chosen such that the element conforms with a nonsingular
quadratic element at the common element boundary (i.e. along edge 3-5). and with singular
elements of the same formulation along boundaries 1-3 and 1-5.

In a manner consistent with the interface crack between dissimilar isotropic media
{Comninou, 1977}, the delamination stress intensity factors are defined as follows:

= ] —d L]
K, !Ln.} J2nr e (r.m/2)
Ky = lim J2rrtt(rn2)

K = fim /2nr "2 c(r. /2. (5)

The energy release rates may be evaluated by using the virtual crack extension concept
(Irwin, 1957):

o
€

G, =lm t o (r.0 ulc—r, = /2 —u{c—r, 3n/2)]dr

o 2 1y
"

R
Gy = lim 1. {r. 0} [ele~r. —7/2)y—v{c~r. 3n/2)] dr
i 2{' Ju

Gy = lim 1.(r,0) (e —r, —nf2)—wle—r, 3n/2)] dr (6)

¢} 2{‘ Jo

where ¢ is the length of virtual crack extension. It can be scen that the stress intensity factors
and energy release rates at the crack tip can be evaluated from the asymptotic solutions of
stress and displacement along the plane of the crack.

The asymptotic stress and displacement can be conveniently determined by this singular
finite element method. Along the crack plane, ¢ = @, the stress and displacement fields
near the crack tip can be approximated by using eqn (4) and its derivatives as:

{a} = p’[PU}{q} )

Wi = Pt MO g} (8)

where [P(0,)] is a product of the stiffness matrix and the matrix of derivatives of the shape

function [M(Z)]. For {s} and {U} along the crack plane 0, = 7/2, the asymptotic stresses
and displucements can be written as follows:

g, = Alr‘sx r(t’ = A!lr‘ss tx: = Aml"s. {9}

3 G
o= 3;!"5“, r= Bgi‘" *t* o= Bﬁg’ﬁ%‘s, (gﬁ}

where



Multiple transverse cracking in composite laminates 1449

B, =B —B_ fori=ILILIII (an

in which the 4,’s, B's and B;"s are obtained from the corresponding components of
[P(n/2)]. [M(—=/2)] and [M(3xr/2)] in eqns (7) and (8). Thus, the stress intensity factors
K can be easily determined from eqn (5):

K = /2nA, fori=LILIIL (12)

The energy release rates can be determined through eqn (6) as:

N i ¢ )i+
G = !Tg ZCJ:) (Ai"J)[B:(C r)’*'ldr

A,‘B,'

—T

/3(2+6,l+6)£i_[lac'”" fori=LILIII (13)

where f is the Beta function as defined in Gradshteyn and Ryzhik (1980). For the inverse
square root singularity, eqn (13) becomes:

n

Gi=,

A B, fori=I1LIHIL (14)

4. CRITICAL ENERGY RELEASE RATE

The quantity measuring the material resistance against transverse cracking is the critical
energy release rate, G,. The energy release rate, G, for-a given applied stress and crack
spacing can be determined by the present singular finite clement method. If G < G, the
flaw will remain stationary. Conversely, the flaw grows when G 2> (..

Bascd on lincar clastic fracture mechanics, G, can be determined as a function of flaw
size from the simple tension test of a transverse ply. Note that in this casc the flaw on the
edge is the most critical location, However, when the transverse ply is constrained by outer
longitudinal plics, the most critical position for a flaw is at the center of the ply. G, may be
obtained as follows:

G‘,=(vl'—l2-(%‘1ﬂ=0.883u (MNm~") (s

where the multiplier 1.12 accounts for the stress intensity magnification of an edge crack ;
o, and E, are the tensile strength and Young's modulus of the transverse ply and are found
to be equal to 56 MPa and 14 GPu, respectively, in Bailey et al. (1979); and « is the flaw
size.

In general, the flaw size is very small compared to the dimension of a transverse ply.
Therefore, the calculated G is proportional to . From eqn (15), G. is also proportional to
a: It follows that the numerical predictions obtained in the analysis will not be influcnced
by the valuc of a.

5. DETERMINATION OF THE CRITICAL APPLIED STRESS

The method used to determine o, the critical value of the applied far field stress at
which crack propagation occurs, is as follows. The energy release rate, G, is a function of
the applied stress for a given critical flaw location, ply properties, and the geometry of the
laminate. Also, G is a function of &4, a constant strain in the =-direction due to the generalized
plane strain condition. Therefore, we have two unknowns, g, and &, to be determined for
flaw growth. Under the action of an applied unit stress, we can obtain A4,, B,, and P,, where
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Fig. 4. Experimentally obscrved average crack spacing as a function of applied stress for specimens
with different transverse ply thicknesses.

A and 8 are defined in eqns (9) and (10), respectively, and P is the total force in the z-
direction due to the generalized plane strain constraint. Similarly, 4., B. and P, can be
obtained from the model response to a unit value of z-direction strain, &,.

In addition to mechanical loading, thermal effects must also be considered. In this
study, the laminates are tested at room temperature, which is 125°C lower than the curing
temperature. The present model is also used to obtain A4,, B, and P, due to thermal effects.
Using the condition that the total force in the s-direction should be equal to zero, i.e.

o.P+e, P+ P =0, (16)

and the condition that G = G, at the onset of crack growth, i.c.
n
4‘ (GL'AS +£()A¢' + AI) (at'Bs +61ch + Bl) = Gro ( l7)

we can solve for the two unknowns, ¢, and &,. Thus, given a prescribed crack spacing, the
critical applied stress to cause crack growth can be determined.

6. NUMERICAL RESULTS AND DISCUSSION

The experimental results shown in Fig. 4 were obtained by Parvizi and Bailey (1978)
for [0/90], laminates with 2d = 0.42-4 mm and 6 = 0.5 mm. These experimental data may
be categorized into three stages, initiation, multiplication and saturation. The saturation of
transverse cracks is also called the characteristic damage state by Reifsnider (1977). Numeri-
cal predictions from the present model arc compared with the experimental results in these
three stages as the applied stress increases.

6.1. [nitiation of transverse cracks

It can be seen from Fig. 4 that there exists a particular stress threshold below which
cracks do not occur. When the applied stress equals the stress threshold, cracks extend
across the transverse ply and terminate at the outside longitudinal plies. The threshold
stress (or strain) can be obtained from the present model. Consider a transverse flaw at the
center of the laminate ; only a representative section needs to be modeled due to symmetry.



Multiple transverse cracking in composite laminates 1451

Singuisr N\
clements
c ™
I [~
D
g
-]
A 8
Longitudinal ply
Pty intertace
Transverse ply
&

Fig. 5. Overall and local finite element mesh arrangements for modeling crack initiation,

As shown in Fig. 5, eight singular elements of identical size and shape are used. These
special singular elements with a —0.5 stress singularity are embedded in the mesh of eight-
node quasi-three-dimensional isoparametric elements.

The numerical predictions of threshold strain are shown in Fig. 6, both with and
without thermal effects. {t can be scen that the results without thermal effects are very close
to a constant which may be obtained from I.l?.\/ 2 a,/E, = 0.634%. When thermal cffects
are considered, the influence of transverse ply thickness becomes more pronounced. As the
thickness of the transverse ply increases, the result approaches the same constant. It should
be noted that for the thickness of the transverse ply considered in this paper, the process is
controlled by transverse cracking. However, for a very thin transverse ply, the process is
dominated by longitudinal cracking as discussed in Dvorak and Laws (1987).

6.2. Multiplication of transverse cracks

It can be scen from experiments that subsequent cracks are introduced by increasing
the applied stress. Assuming that all subsequent cracks are evenly spaced, a representative
section may be considered, due to symmetry. A typicul finite element mesh is shown in Fig.
7. This mesh is similar to the mesh in Fig. 5, with the exception of the additional crack
between the two points E and F. Eight singular elements with the 8, stress singularity are
placed around the crack tip (point E).

Consider a laminate with an even crack spacing, § (Fig. 7). As the applied stress
reaches a,, the cruck spacing will reduce to S/2. Therefore, by connecting the points (a., )
for all crack spacing, the upper bound solution can be obtained. Similarly, the lower bound
solution can be obtained by connecting the points (a,, S§/2) for all crack spacing. The
numerical predictions are compared with experimental data for 2d = 0.42, 1.2, 2 and 4 mm
as shown in Figs 8-11, respectively.

1.5 Y Y T T
O Experimentst dats from
Parvizi, Garrett and Bailey (1978)
— e Without thermal effecta
210 With thermal eft T
£
- o= -
Bost & © ® .
o i i 1 i
[} 1 2 3 4 $
T ply thick {mm)

Fig. 6. Comprison of theoretical predictions with experimental data for initiation of transverse
cracks in [0/90], laminate,
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Fig. 7. Overall finite element mesh arrangement for modeling crack multiplication and crack
saturation.
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Fig. 8. Compuarison of theoretical predictions with experimental data for multiplication of transverse
cracks in [0/90], uninate with 2 = (.42 mm
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Fig. 9. Comparison of theoretical predictions with experimental data for multiplication of transverse
cracks in [0/90], laminate with 2d = [.2 mm.

Note that for large values of applied stress, the experimental data are bounded by these
two curves. In the initial stage of multiple cracking in the laminatc with 2d = 0.42, 1.2 and
2 mm, lower applied stresses are predicted than experimentally observed. This may be due
to the fact that the cracks are not evenly distributed at the onset of crack multiplication.
Also note that for the laminate with 2d = 4 mm, delamination between transverse and
longitudinal plies was observed by Parvizi et al. (1978). More discrepancy is expected when
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Fig. 10. Comparison of theoretical predictions with experimental data for multiplication of trans-
verse cracks in {0/90], laminate with 2d = 2 mm.
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Fig. 1. Comparison of theoretical predictions with experimental data for multiplcation of transverse
cracks in [0/90], laminate with 2d = 4 mm.

2d = 4 mm, since the interaction of delamination and transverse cracking is not considered
in the present analysis.

6.3, Saturation of transverse cracks

From the observation of the laminate behavior with 2d = 0.42 and 1.2 mm in Fig. 4,
there seems to be a state of crack saturation, where the strength of the laminate is not
exceeded during crack multiplication. In this stage, the thermal effects can be neglected,
since the influence of the thermal effects is very small as compared with the effect of the
applied stress, a. It cun be shown that G is proportional to ¢, and will reduce as the crack
spacing reduces. Therefore, the saturation crack spacing can be determined by letting G = 0
at the flaw tip, such that no flaw growth can occur for any value of . The comparison of

numerical predictions and experimental results is shown in Fig. 12. Conservative predictions
are obtained by the analysis.

T T T
© Experimenial dats from
Purvizi snd Selley {1878)

s
‘!‘ i~ — Theorstical predictions
o E 2r .
iz o
s
2 i \ R 3 -4
3.
0 ) 1 1
] 0.5 .0 1.5 20
T se ply thickness (mm)

Fig. 12. Comparison of theorctical predictions with experimental data for saturation of transverse
cracks in [0.90}, laminate.
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7. CONCLUSIONS

The fundamental nature of the stress singularity at the interface tip of the transverse
crack in a [0/90], laminate was examined. An advanced finite element method employing
special singular elements containing an exact stress singularity has been used to study
the fracture mechanisms of multiple transverse cracking in composite laminates. Close
agreement between the numerical predictions and experimental results was obtained.

In this study. it was observed that the energy release rate at the flaw tip is proportional
to the flaw size, g, since the thickness of a transverse ply is much larger than a. In some
cases, it may not be true when a is of the same order as the thickness of transverse ply.
Nevertheless. the present method can still be used if the exact values of G, and a can be
obtained from experiments. Furthermore, the interaction of delamination and transverse
cracking was not considered in the analysis. This may be a good subject for further research.
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APPENDIX: SHAPE FUNCTIONS [N,(p, &: 8)] FOR THE SINGULAR ELEMENT

Corresponding to the order of stress singularity, 8, the shape function in local triangular polar coordinates,
(p. &) for the six-node conforming singular element is shown in Stern (1979) to have the following expressions :

[N] = [NLNL LN (Al)
where
2-2-4 l
N,=l+§_—,:—lp—§—_-,,—:ip“' (A2)

2 2 o 4e
Ny = -:,T.T_—l‘(l—f)lﬁ' -zj_—l(l*k;)l’" ! (A3)
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-4

2 1
Ny= 3 (1=Dp~-(1-9 (Z_‘t_l +2¢)P‘°'

Ne=4(1-9p*!
-3

1
Ny = Z_T_Tfﬂ—[ir_—l +2(1 —f):lfp"'

—_ 2 2 3+ 1
Ne= —sm78p+ 3op

and 1 is the 3 x 3 identity matrix.
The local coordinates, p and §, are related to the global coordinates by :

_(o—x)and-(y;-y)
(vs=y3)~(xs~x;)tand

p=rlf()

¢

where
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(A4)

(A5

(A6)

(A7)

(A8)

(A9)

() = {(-‘)—Xl)z+(.vl—yl)z+ 2&[(x,—x,)(x,—x,)+(y,-y,)(y,—-y,)]+¢:[(x,—x,)’+(y,—y,)’]} "2,

SAS 25:12-8

(A10)



